Mirtazapine (Remeron) Patient Guide: Benefits, Dosing, and Side Effects Explained

Table of Contents

This guide is adapted from the clinician guide authored by Sebastián Malleza, M.D., M.Sc. at the Psychopharmacology Institute. For the complete clinical resource, visit: Mirtazapine Guide: Pharmacology, Indications, Dosing Guidelines and Adverse Effects

What is Mirtazapine?

Mirtazapine (brand names Remeron and Remeron SolTab) is a medication used to treat major depressive disorder (MDD)[1]. It works differently from many other antidepressants by enhancing both norepinephrine and serotonin activity in the brain without directly affecting their reuptake[1,2]. Mirtazapine may be particularly helpful for people experiencing depression with insomnia, anxiety, or poor appetite[6].

Compared to other antidepressants, mirtazapine offers these advantages:

  • Minimal sexual side effects compared to SSRIs[5,20,21]
  • Fewer stomach and digestive side effects[5]
  • Can improve sleep and appetite[6]
  • May help with anxiety symptoms[6]

Your doctor might recommend alternatives if you:

  • Have concerns about weight gain (mirtazapine commonly causes weight gain)[27-29]
  • Need to avoid sedation during the day
  • Have liver problems
  • Experience low blood pressure when standing (orthostatic hypotension)

How Does This Medication Work?

Mirtazapine works through several mechanisms to improve depression[1,2]:

  1. Increases norepinephrine and serotonin: It blocks certain receptors (alpha-2 receptors) that normally limit the release of these mood-regulating chemicals
  2. Blocks specific serotonin receptors: This action (at 5-HT2 and 5-HT3 receptors) may explain why it causes fewer sexual and digestive side effects than SSRIs[1,3,5]
  3. Antihistamine effects: Strong blockade of histamine receptors causes sedation, which can help with sleep but may cause daytime drowsiness[1,3,6]

An interesting feature of mirtazapine is that lower doses (15 mg or less) tend to be MORE sedating than higher doses. This happens because at higher doses, the activating effects on norepinephrine partially counteract the sedating antihistamine effects[7-9].

How to Take This Medication

Mirtazapine comes in two forms:

Regular Tablets

  • Strengths: 7.5 mg, 15 mg (scored), 30 mg (scored), 45 mg
  • Can be split if scored
  • Take with or without food

Orally Disintegrating Tablets (Remeron SolTab)

  • Strengths: 15 mg, 30 mg, 45 mg
  • Dissolves on your tongue without water
  • Cannot be split or crushed
  • Keep in blister pack until ready to use
  • Contains phenylalanine (important if you have phenylketonuria)

Important instructions:

  • Take once daily at bedtime (due to sedating effects)
  • Take at the same time each day
  • If you miss a dose, take it as soon as you remember unless it’s almost time for your next dose
  • Never double up on doses

Typical Dosing

For Depression

  • Starting dose: 15 mg once daily at bedtime[1]
    • Some people sensitive to medications may start at 7.5 mg[14]
  • Dose increases: Your doctor may increase by 15 mg every 1-2 weeks
  • Target dose: 15-45 mg daily
  • Maximum dose: 45 mg daily (though up to 60 mg has been studied)[15]

Remember: Lower doses (7.5-15 mg) are often MORE sedating than higher doses (30-45 mg)[7-9].

Common Side Effects

Many side effects improve as your body adjusts to the medication.

Most Common Side Effects

Sedation/Drowsiness (54%)[1]

  • The most common side effect
  • More pronounced at lower doses (15 mg or less)[7,8]
  • Usually improves within a few days[25,26]
  • Taking at bedtime helps minimize daytime drowsiness

Weight Gain (12%)[1]

  • One of the antidepressants most likely to cause weight gain[27]
  • Short-term (1-3 months): Average gain of 3.8 pounds
  • Long-term (4+ months): Average gain of 5.7 pounds
  • About 22% of patients gain more than 7% of their body weight after 9 months[28]
  • Monitor your weight regularly
  • Discuss with your doctor if weight gain becomes problematic

Increased Appetite (17%)[1,31]

  • Often occurs early in treatment[34]
  • May be beneficial if depression caused poor appetite or weight loss
  • Can be used therapeutically in elderly or ill patients needing appetite stimulation[32,33]

Other Common Side Effects:

  • Dry mouth (25%)[1]
  • Constipation (13%)[1]
  • Dizziness (7%)[1]
  • Increased cholesterol (15%)[1]
  • Increased triglycerides (6%)[1]

Advantages Over Other Antidepressants

Low Risk of Low Sodium (Hyponatremia)

  • Only 3-4% incidence[36]
  • Often considered the safest antidepressant for patients prone to low sodium[36,37]

Minimal Sexual Side Effects

  • Significantly lower rates than SSRIs[20]
  • May be used to treat SSRI-induced sexual problems[21-24]

Important Safety Information

Do Not Take Mirtazapine If:

  • You are taking or have recently taken (within 14 days) MAO inhibitors[11]

Talk to Your Doctor Before Taking Mirtazapine If You Have:

  • Liver problems
  • Kidney problems
  • Heart disease or QT prolongation
  • Low blood pressure
  • History of seizures
  • History of mania or bipolar disorder
  • Low white blood cell count
  • Phenylketonuria (if using orally disintegrating tablets)

Important Drug Interactions

Tell your doctor about all medications you take, especially:

  • Other antidepressants
  • Migraine medications (triptans)
  • Tramadol
  • St. John’s Wort
  • Ketoconazole or other strong antifungals[1]
  • Cimetidine[10]
  • Carbamazepine or phenytoin[1]
  • Warfarin (blood thinner)[1]

Avoid While Taking Mirtazapine:

  • Alcohol (can increase sedation)
  • Driving or operating machinery until you know how it affects you
  • Other sedating medications without consulting your doctor

When to Contact Your Doctor Immediately

Contact your healthcare provider right away if you experience:

  • Fever, sore throat, or signs of infection (could indicate low white blood cells)[1,38]
  • Unusual bleeding or bruising[40-42]
  • Thoughts of suicide or worsening depression
  • Signs of serotonin syndrome: agitation, hallucinations, rapid heart rate, fever, excessive sweating, muscle stiffness, nausea, vomiting, diarrhea[1,43]
  • Severe dizziness or fainting when standing up[55]
  • Manic symptoms: extreme high energy, decreased need for sleep, racing thoughts[46-48]
  • Unusual movements or restlessness[56-58]
  • Severe allergic reaction

Starting and Stopping the Medication

Starting:

  • It may take 2-4 weeks to feel the full benefits
  • Sedation often improves after the first few days[25,26]
  • Be patient and take as prescribed

Stopping:

  • Do not stop suddenly – mirtazapine has one of the highest risks for withdrawal symptoms among antidepressants[50]
  • Withdrawal symptoms may include: dizziness, nausea, anxiety, sleep problems[1,51]
  • Rare symptoms: itching or manic symptoms[52,53]
  • Your doctor will create a gradual tapering schedule

Special Considerations

Pregnancy and Breastfeeding

  • Pregnancy: Studies have not shown increased risk of birth defects[63,64]
    • Possible increased risk of preterm birth[65]
    • About one-third of exposed infants may have mild, temporary adjustment issues after birth[67]
  • Breastfeeding: Generally considered acceptable[71]
    • Very low levels pass into breast milk[1,70]
    • Monitor baby for sedation, feeding problems, and adequate weight gain[71]

Older Adults

  • May need lower starting dose (7.5 mg)[1]
  • Higher risk of side effects
  • Monitor for low sodium levels[1,37]

Liver Problems

  • Requires dose reduction[1]
  • Mild to moderate impairment: Start at 50% of normal dose, maximum 30 mg daily[73,74]
  • Severe impairment: Consider alternatives[75]

Kidney Problems

  • No dose adjustment needed if kidney function >30 mL/minute[1]
  • Severe kidney disease or dialysis: Start at 7.5-15 mg, increase slowly[1,76]

Weight Considerations

Mirtazapine commonly causes weight gain. Your doctor may recommend alternatives if you:

  • Already have obesity or metabolic syndrome
  • Have diabetes or prediabetes
  • Cannot tolerate weight gain

Benefits of Mirtazapine

Many patients choose mirtazapine because it:

  • Improves sleep quickly (often within days)
  • Has minimal sexual side effects[20,21]
  • Causes fewer stomach problems than SSRIs[5]
  • Can improve appetite in those who need it[32,33]
  • May help with both depression and anxiety[6]
  • Has lower risk of causing low sodium[36,37]

Rare but Serious Side Effects

Blood Cell Problems

  • Low white blood cells (agranulocytosis): Very rare but serious[38]
    • Usually occurs within first month
    • Watch for fever, sore throat, or flu-like symptoms
    • Your doctor may monitor blood counts
  • Low platelets: Can affect blood clotting[40,41]

Movement Problems

More common at higher doses (30-45 mg):

  • Restlessness (akathisia)[56,57]
  • Abnormal movements[58,60,61]
  • Restless legs syndrome[62]

Important Notes

  • Take exactly as prescribed
  • Don’t stop suddenly without medical supervision
  • Regular monitoring of weight and cholesterol may be needed
  • The sedating effect often helps with sleep but may interfere with daytime activities initially
  • If using orally disintegrating tablets, they contain phenylalanine

References

  1. US Food and Drug Administration. (2021). REMERON® (mirtazapine) tablets, for oral use Prescribing Information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/020415s038,021208s028lbl.pdf
  2. Al-Majed, A., Bakheit, A. H., Alharbi, R. M., & Abdel Aziz, H. A. (2018). Chapter Two – Mirtazapine. In H. G. Brittain (Ed.), Profiles of Drug Substances, Excipients and Related Methodology (Vol. 43, pp. 209–254). Academic Press. https://doi.org/10.1016/bs.podrm.2018.01.002
  3. Schwasinger-Schmidt, T. E., & Macaluso, M. (2019). Other Antidepressants. Handbook of Experimental Pharmacology, 250, 325–355. https://doi.org/10.1007/164_2018_167
  4. de Boer, T. (1996). The pharmacologic profile of mirtazapine. The Journal of Clinical Psychiatry, 57 Suppl 4, 19–25.
  5. Hassanein, E. H. M., Althagafy, H. S., Baraka, M. A., Abd-alhameed, E. K., & Ibrahim, I. M. (2024). Pharmacological update of mirtazapine: A narrative literature review. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397(5), 2603–2619. https://doi.org/10.1007/s00210-023-02818-6
  6. Anttila, S. A. K., & Leinonen, E. V. J. (2006). A Review of the Pharmacological and Clinical Profile of Mirtazapine. CNS Drug Reviews, 7(3), 249. https://doi.org/10.1111/j.1527-3458.2001.tb00198.x
  7. Iwamoto, K., Kawano, N., Sasada, K., Kohmura, K., Yamamoto, M., Ebe, K., Noda, Y., & Ozaki, N. (2013). Effects of low-dose mirtazapine on driving performance in healthy volunteers. Human Psychopharmacology, 28(5), 523–528. https://doi.org/10.1002/hup.2327
  8. Karsten, J., Hagenauw, L. A., Kamphuis, J., & Lancel, M. (2017). Low doses of mirtazapine or quetiapine for transient insomnia: A randomised, double-blind, cross-over, placebo-controlled trial. Journal of Psychopharmacology (Oxford, England), 31(3), 327–337. https://doi.org/10.1177/0269881116681399
  9. Radhakishun, F. S., van den Bos, J., van der Heijden, B. C., Roes, K. C., & O’Hanlon, J. F. (2000). Mirtazapine effects on alertness and sleep in patients as recorded by interactive telecommunication during treatment with different dosing regimens. Journal of Clinical Psychopharmacology, 20(5), 531–537. https://doi.org/10.1097/00004714-200010000-00006
  10. Timmer, C. J., Sitsen, J. M., & Delbressine, L. P. (2000). Clinical pharmacokinetics of mirtazapine. Clinical Pharmacokinetics, 38(6), 461–474. https://doi.org/10.2165/00003088-200038060-00001
  11. LUNDBECK CANADA INC. (2024). TRINTELLIX® (vortioxetine) Product Monograph. https://pdf.hres.ca/dpd_pm/00075682.PDF
  12. Lam, R. W., Kennedy, S. H., Adams, C., Bahji, A., Beaulieu, S., Bhat, V., Blier, P., Blumberger, D. M., Brietzke, E., Chakrabarty, T., Do, A., Frey, B. N., Giacobbe, P., Gratzer, D., Grigoriadis, S., Habert, J., Ishrat Husain, M., Ismail, Z., McGirr, A., … Milev, R. V. (2024). Canadian Network for Mood and Anxiety Treatments (CANMAT) 2023 Update on Clinical Guidelines for Management of Major Depressive Disorder in Adults: Réseau canadien pour les traitements de l’humeur et de l’anxiété (CANMAT) 2023 : Mise à jour des lignes directrices cliniques pour la prise en charge du trouble dépressif majeur chez les adultes. Can. J. Psychiatry, 69(9), 641–687. https://doi.org/10.1177/07067437241245384
  13. Bauer, M., Pfennig, A., Severus, E., Whybrow, P. C., Angst, J., Möller, H.-J., & Šon behalf of the Task Force on Unipolar Depressive Disorders. (2013). World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders, Part 1: Update 2013 on the acute and continuation treatment of unipolar depressive disorders. The World Journal of Biological Psychiatry, 14(5), 334–385. https://doi.org/10.3109/15622975.2013.804195
  14. Bandelow, B., Allgulander, C., Baldwin, D. S., Costa, D. L. da C., Denys, D., Dilbaz, N., Domschke, K., Eriksson, E., Fineberg, N. A., Hättenschwiler, J., Hollander, E., Kaiya, H., Karavaeva, T., Kasper, S., Katzman, M., Kim, Y.-K., Inoue, T., Lim, L., Masdrakis, V., … Zohar, J. (2023). World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for treatment of anxiety, obsessive-compulsive and posttraumatic stress disorders – Version 3. Part I: Anxiety disorders. World J. Biol. Psychiatry, 24(2), 79–117. https://doi.org/10.1080/15622975.2022.2086295
  15. The Management of Major Depressive Disorder Work Group. (2022). Management of Major Depressive Disorder (MDD) (2022). Department of Veterans Affairs; Department of Defense. https://www.healthquality.va.gov/guidelines/MH/mdd/
  16. Ribeiro, L., Busnello, J. V., Kauer-Sant’Anna, M., Madruga, M., Quevedo, J., Busnello, E. A., & Kapczinski, F. (2001). Mirtazapine versus fluoxetine in the treatment of panic disorder. Brazilian Journal of Medical and Biological Research = Revista Brasileira De Pesquisas Medicas E Biologicas, 34(10), 1303–1307. https://doi.org/10.1590/s0100-879×2001001000010
  17. Sarchiapone, M., Amore, M., De Risio, S., Carli, V., Faia, V., Poterzio, F., Balista, C., Camardese, G., & Ferrari, G. (2003). Mirtazapine in the treatment of panic disorder: An open-label trial. International Clinical Psychopharmacology, 18(1), 35–38. https://doi.org/10.1097/00004850-200301000-00006
  18. Montañés-Rada, F., De Lucas-Taracena, M. T., & Sánchez-Romero, S. (2005). Mirtazapine versus paroxetine in panic disorder: An open study. International Journal of Psychiatry in Clinical Practice, 9(2), 87–93. https://doi.org/10.1080/13651500510018248
  19. Boshuisen, M. L., Slaap, B. R., Vester-Blokland, E. D., & den Boer, J. A. (2001). The effect of mirtazapine in panic disorder: An open label pilot study with a single-blind placebo run-in period. International Clinical Psychopharmacology, 16(6), 363–368. https://doi.org/10.1097/00004850-200111000-00008
  20. Serretti, A., & Chiesa, A. (2009). Treatment-emergent sexual dysfunction related to antidepressants: A meta-analysis. Journal of Clinical Psychopharmacology, 29(3), 259–266. https://doi.org/10.1097/JCP.0b013e3181a5233f
  21. Montejo, A. L., Prieto, N., de Alarcón, R., Casado-Espada, N., de la Iglesia, J., & Montejo, L. (2019). Management Strategies for Antidepressant-Related Sexual Dysfunction: A Clinical Approach. Journal of Clinical Medicine, 8(10), 1640. https://doi.org/10.3390/jcm8101640
  22. Gelenberg, A. J., McGahuey, C., Laukes, C., Okayli, G., Moreno, F., Zentner, L., & Delgado, P. (2000). Mirtazapine substitution in SSRI-induced sexual dysfunction. The Journal of Clinical Psychiatry, 61(5), 356–360. https://doi.org/10.4088/jcp.v61n0506
  23. Ozmenler, N. K., Karlidere, T., Bozkurt, A., Yetkin, S., Doruk, A., Sutcigil, L., Cansever, A., Uzun, O., Ozgen, F., & Ozsahin, A. (2008). Mirtazapine augmentation in depressed patients with sexual dysfunction due to selective serotonin reuptake inhibitors. Human Psychopharmacology, 23(4), 321–326. https://doi.org/10.1002/hup.929
  24. Atmaca, M., Korkmaz, S., Topuz, M., & Mermi, O. (2011). Mirtazapine augmentation for selective serotonin reuptake inhibitor-induced sexual dysfunction: A retropective investigation. Psychiatry Investigation, 8(1), 55–57. https://doi.org/10.4306/pi.2011.8.1.55
  25. Nutt, D. (1997). Mirtazapine: Pharmacology in relation to adverse effects. Acta Psychiatrica Scandinavica. Supplementum, 391, 31–37. https://doi.org/10.1111/j.1600-0447.1997.tb05956.x
  26. Papazisis, G., Siafis, S., & Tzachanis, D. (2018). Tachyphylaxis to the Sedative Action of Mirtazapine. The American Journal of Case Reports, 19, 410–412. https://doi.org/10.12659/ajcr.908412
  27. Serretti, A., & Mandelli, L. (2010). Antidepressants and body weight: A comprehensive review and meta-analysis. The Journal of Clinical Psychiatry, 71(10), 1259–1272. https://doi.org/10.4088/JCP.09r05346blu
  28. Blumenthal, S. R., Castro, V. M., Clements, C. C., Rosenfield, H. R., Murphy, S. N., Fava, M., Weilburg, J. B., Erb, J. L., Churchill, S. E., Kohane, I. S., Smoller, J. W., & Perlis, R. H. (2014). An Electronic Health Records Study of Long-term Weight Gain Following Antidepressant Use. JAMA Psychiatry, 71(8), 889–896. https://doi.org/10.1001/jamapsychiatry.2014.414
  29. Gafoor, R., Booth, H. P., & Gulliford, M. C. (2018). Antidepressant utilisation and incidence of weight gain during 10 years’ follow-up: Population based cohort study. BMJ (Clinical Research Ed.), 361, k1951. https://doi.org/10.1136/bmj.k1951
  30. Salvi, V., Mencacci, C., & Barone-Adesi, F. (2016). H1-histamine receptor affinity predicts weight gain with antidepressants. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 26(10), 1673–1677. https://doi.org/10.1016/j.euroneuro.2016.08.012
  31. Hennings, J. M., Heel, S., Lechner, K., Uhr, M., Dose, T., Schaaf, L., Holsboer, F., Lucae, S., Fulda, S., & Kloiber, S. (2019). Effect of mirtazapine on metabolism and energy substrate partitioning in healthy men. JCI Insight, 4(1), e123786. https://doi.org/10.1172/jci.insight.123786
  32. Arrieta, O., Cárdenas-Fernández, D., Rodriguez-Mayoral, O., Gutierrez-Torres, S., Castañares, D., Flores-Estrada, D., Reyes, E., López, D., Barragán, P., Soberanis Pina, P., Cardona, A. F., & Turcott, J. G. (2024). Mirtazapine as Appetite Stimulant in Patients With Non–Small Cell Lung Cancer and Anorexia: A Randomized Clinical Trial. JAMA Oncology, 10(3), 305–314. https://doi.org/10.1001/jamaoncol.2023.5232
  33. Avena-Woods, C., & Hilas, O. (2012). Antidepressant use in underweight older adults. The Consultant Pharmacist: The Journal of the American Society of Consultant Pharmacists, 27(12), 868–870. https://doi.org/10.4140/TCP.n.2012.868
  34. Nutt, D. J. (2002). Tolerability and safety aspects of mirtazapine. Human Psychopharmacology: Clinical and Experimental, 17(S1), S37–S41. https://doi.org/10.1002/hup.388
  35. Lechner, K., Heel, S., Uhr, M., Dose, T., Holsboer, F., Lucae, S., Schaaf, L., Fulda, S., Kloiber, S., & Hennings, J. M. (2023). Weight-gain independent effect of mirtazapine on fasting plasma lipids in healthy men. Naunyn-Schmiedeberg’s Archives of Pharmacology, 396(9), 1999–2008. https://doi.org/10.1007/s00210-023-02448-y
  36. Moscona-Nissan, A., López-Hernández, J. C., & González-Morales, A. P. (n.d.). Mirtazapine Risk of Hyponatremia and Syndrome of Inappropriate Antidiuretic Hormone Secretion in Adult and Elderly Patients: A Systematic Review. Cureus, 13(12), e20823. https://doi.org/10.7759/cureus.20823
  37. Gheysens, T., Van Den Eede, F., & De Picker, L. (2024). The risk of antidepressant-induced hyponatremia: A meta-analysis of antidepressant classes and compounds. European Psychiatry, 67(1), e20. https://doi.org/10.1192/j.eurpsy.2024.11
  38. Kharel, H., Anjum, Z., Kharel, Z., Sugastti, E. F. A., Verghese, B. G., & Kouides, P. A. (2023). Mirtazapine induced neutropenia: A case report and systematic review. Revista Hematología, 27(2, 2), 36–43. https://doi.org/10.48057/hematologa.v27i2.535
  39. Johnston, A., & Uetrecht, J. (2015). Current understanding of the mechanisms of idiosyncratic drug-induced agranulocytosis. Expert Opinion on Drug Metabolism & Toxicology, 11(2), 243–257. https://doi.org/10.1517/17425255.2015.985649
  40. Arnold, D. M., Kukaswadia, S., Nazi, I., Esmail, A., Dewar, L., Smith, J. W., Warkentin, T. E., & Kelton, J. G. (2013). A systematic evaluation of laboratory testing for drug-induced immune thrombocytopenia. Journal of Thrombosis and Haemostasis: JTH, 11(1), 169–176. https://doi.org/10.1111/jth.12052
  41. Stuhec, M., Alisky, J., & Malesic, I. (2014). Mirtazapine associated with drug-related thrombocytopenia: A case report. Journal of Clinical Psychopharmacology, 34(5), 662–664. https://doi.org/10.1097/JCP.0000000000000201
  42. Liu, X., & Sahud, M. A. (2003). Glycoprotein IIb/IIIa complex is the target in mirtazapine-induced immune thrombocytopenia. Blood Cells, Molecules & Diseases, 30(3), 241–245. https://doi.org/10.1016/s1079-9796(03)00037-8
  43. Ubogu, E. E., & Katirji, B. (2003). Mirtazapine-induced serotonin syndrome. Clinical Neuropharmacology, 26(2), 54–57. https://doi.org/10.1097/00002826-200303000-00002
  44. Berling, I., & Isbister, G. K. (2014). Mirtazapine overdose is unlikely to cause major toxicity. Clinical Toxicology (Philadelphia, Pa.), 52(1), 20–24. https://doi.org/10.3109/15563650.2013.859264
  45. Gillman, P. K. (2003). Mirtazapine: Unable to Induce Serotonin Toxicity? Clinical Neuropharmacology, 26(6), 288. https://journals.lww.com/clinicalneuropharm/citation/2003/11000/mirtazapine__unable_to_induce_serotonin_toxicity_.3.aspx
  46. Basavraj, V., Nanjundappa, G. B., & Chandra, P. S. (2011). Mirtazapine induced mania in a woman with major depression in the absence of features of bipolarity. The Australian and New Zealand Journal of Psychiatry, 45(10), 901. https://doi.org/10.3109/00048674.2011.589369
  47. Soutullo, C. A., McElroy, S. L., & Keck, P. E. (1998). Hypomania associated with mirtazapine augmentation of sertraline. The Journal of Clinical Psychiatry, 59(6), 320. https://doi.org/10.4088/jcp.v59n0608e
  48. Bhanji, N. H., Margolese, H. C., Saint-Laurent, M., & Chouinard, G. (2002). Dysphoric mania induced by high-dose mirtazapine: A case for ’norepinephrine syndrome’? International Clinical Psychopharmacology, 17(6), 319–322. https://doi.org/10.1097/00004850-200211000-00009
  49. Allen, N. D., Leung, J. G., & Palmer, B. A. (2020). Mirtazapine’s effect on the QT interval in medically hospitalized patients. The Mental Health Clinician, 10(1), 30–33. https://doi.org/10.9740/mhc.2020.01.030
  50. Horowitz, M. A., Framer, A., Hengartner, M. P., Sørensen, A., & Taylor, D. (2023). Estimating Risk of Antidepressant Withdrawal from a Review of Published Data. CNS Drugs, 37(2), 143–157. https://doi.org/10.1007/s40263-022-00960-y
  51. Berigan, T. R. (2001). Mirtazapine-Associated Withdrawal Symptoms: A Case Report. Primary Care Companion to the Journal of Clinical Psychiatry, 3(3), 143. https://doi.org/10.4088/pcc.v03n0307a
  52. Pombo, R., Johnson, E., Gamboa, A., & Omalu, B. (2017). Autopsy-proven Mirtazapine Withdrawal-induced Mania/Hypomania Associated with Sudden Death. Journal of Pharmacology & Pharmacotherapeutics, 8(4), 185–187. https://doi.org/10.4103/jpp.JPP_162_16
  53. Spitznogle, B., & Gerfin, F. (2019). Pruritus associated with abrupt mirtazapine discontinuation: Single case report. The Mental Health Clinician, 9(6), 401–403. https://doi.org/10.9740/mhc.2019.11.401
  54. Cosci, F. (2017). Withdrawal symptoms after discontinuation of a noradrenergic and specific serotonergic antidepressant: A case report and review of the literature. Personalized Medicine in Psychiatry, 1–2, 81–84. https://doi.org/10.1016/j.pmip.2016.11.001
  55. Khawaja, I. S., & Feinstein, R. E. (2003). Cardiovascular effects of selective serotonin reuptake inhibitors and other novel antidepressants. Heart Disease (Hagerstown, Md.), 5(2), 153–160. https://doi.org/10.1097/01.hdx.0000061695.97215.64
  56. Markoula, S., Konitsiotis, S., Chatzistefanidis, D., Lagos, G., & Kyritsis, A. P. (2010). Akathisia induced by mirtazapine after 20 years of continuous treatment. Clinical Neuropharmacology, 33(1), 50–51. https://doi.org/10.1097/WNF.0b013e3181bf213b
  57. Raveendranathan, D., & Swaminath, G. R. (2015). Mirtazapine Induced Akathisia: Understanding a Complex Mechanism. Indian Journal of Psychological Medicine, 37(4), 474–475. https://doi.org/10.4103/0253-7176.168615
  58. Yoon, W. T. (2018). Hyperkinetic Movement Disorders Induced by Mirtazapine: Unusual Case Report and Clinical Analysis of Reported Cases. Journal of Psychiatry, 21(2). https://doi.org/10.4172/2378-5756.1000437
  59. Praharaj, S. K., Kongasseri, S., Behere, R. V., & Sharma, P. S. V. N. (2015). Mirtazapine for antipsychotic-induced acute akathisia: A systematic review and meta-analysis of randomized placebo-controlled trials. Therapeutic Advances in Psychopharmacology, 5(5), 307–313. https://doi.org/10.1177/2045125315601343
  60. Konitsiotis, S., Pappa, S., Mantas, C., & Mavreas, V. (2005). Acute reversible dyskinesia induced by mirtazapine. Movement Disorders: Official Journal of the Movement Disorder Society, 20(6), 771. https://doi.org/10.1002/mds.20432
  61. Balaz, M., & Rektor, I. (2010). Gradual onset of dyskinesia induced by mirtazapine. Neurology India, 58(4), 672–673. https://doi.org/10.4103/0028-3886.68693
  62. Makiguchi, A., Nishida, M., Shioda, K., Suda, S., Nisijima, K., & Kato, S. (2015). Mirtazapine-induced restless legs syndrome treated with pramipexole. The Journal of Neuropsychiatry and Clinical Neurosciences, 27(1), e76. https://doi.org/10.1176/appi.neuropsych.13120357
  63. Winterfeld, U., Klinger, G., Panchaud, A., Stephens, S., Arnon, J., Malm, H., te Winkel, B., Clementi, M., Pistelli, A., Manakova, E., Eleftheriou, G., Merlob, P., Kaplan, Y. C., Buclin, T., & Rothuizen, L. E. (2015). Pregnancy Outcome Following Maternal Exposure to Mirtazapine A Multicenter, Prospective Study. Journal of Clinical Psychopharmacology, 35(3), 250–259. https://doi.org/10.1097/JCP.0000000000000309
  64. Ostenfeld, A., Petersen, T. S., Pedersen, L. H., Westergaard, H. B., Løkkegaard, E. C. L., & Andersen, J. T. (2022). Mirtazapine exposure in pregnancy and fetal safety: A nationwide cohort study. Acta Psychiatrica Scandinavica, 145(6), 557–567. https://doi.org/10.1111/acps.13431
  65. Djulus, J., Koren, G., Einarson, T. R., Wilton, L., Shakir, S., Diav-Citrin, O., Kennedy, D., Voyer Lavigne, S., De Santis, M., & Einarson, A. (2006). Exposure to mirtazapine during pregnancy: A prospective, comparative study of birth outcomes. The Journal of Clinical Psychiatry, 67(8), 1280–1284. https://doi.org/10.4088/jcp.v67n0817
  66. Palmsten, K., Huybrechts, K. F., Michels, K. B., Williams, P. L., Mogun, H., Setoguchi, S., & Hernández-Díaz, S. (2013). Antidepressant use and risk for preeclampsia. Epidemiology (Cambridge, Mass.), 24(5), 682–691.
  67. Kieviet, N., Hoppenbrouwers, C., Dolman, K. M., Berkhof, J., Wennink, H., & Honig, A. (2015). Risk factors for poor neonatal adaptation after exposure to antidepressants in utero. Acta Paediatrica (Oslo, Norway: 1992), 104(4), 384–391. https://doi.org/10.1111/apa.12921
  68. Grigoriadis, S., VonderPorten, E. H., Mamisashvili, L., Eady, A., Tomlinson, G., Dennis, C.-L., Koren, G., Steiner, M., Mousmanis, P., Cheung, A., & Ross, L. E. (2013). The effect of prenatal antidepressant exposure on neonatal adaptation: A systematic review and meta-analysis. The Journal of Clinical Psychiatry, 74(4), e309–320. https://doi.org/10.4088/JCP.12r07967
  69. Smit, M., Dolman, K. M., & Honig, A. (2016). Mirtazapine in pregnancy and lactation – A systematic review. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 26(1), 126–135. https://doi.org/10.1016/j.euroneuro.2015.06.014
  70. Aichhorn, W., Whitworth, A. B., Weiss, U., & Stuppaeck, C. (2004). Mirtazapine and breast-feeding. The American Journal of Psychiatry, 161(12), 2325. https://doi.org/10.1176/appi.ajp.161.12.2325
  71. Kristensen, J. H., Ilett, K. F., Rampono, J., Kohan, R., & Hackett, L. P. (2007). Transfer of the antidepressant mirtazapine into breast milk. British Journal of Clinical Pharmacology, 63(3), 322–327. https://doi.org/10.1111/j.1365-2125.2006.02773.x
  72. Sriraman, N. K., Melvin, K., Meltzer-Brody, S., & the Academy of Breastfeeding Medicine. (2015). ABM Clinical Protocol #18: Use of Antidepressants in Breastfeeding Mothers. Breastfeeding Medicine, 10(6), 290–299. https://doi.org/10.1089/bfm.2015.29002
  73. Mauri, M. C., Fiorentini, A., Paletta, S., & Altamura, A. C. (2014). Pharmacokinetics of antidepressants in patients with hepatic impairment. Clinical Pharmacokinetics, 53(12), 1069–1081. https://doi.org/10.1007/s40262-014-0187-5
  74. Mullish, B. H., Kabir, M. S., Thursz, M. R., & Dhar, A. (2014). Review article: Depression and the use of antidepressants in patients with chronic liver disease or liver transplantation. https://doi.org/10.1111/apt.12925
  75. Rogal, S. S., Hansen, L., Patel, A., Ufere, N. N., Verma, M., Woodrell, C. D., & Kanwal, F. (2022). AASLD Practice Guidance: Palliative care and symptom-based management in decompensated cirrhosis. Hepatology (Baltimore, Md.), 76(3), 819–853. https://doi.org/10.1002/hep.32378
  76. Nagler, E. V., Webster, A. C., Vanholder, R., & Zoccali, C. (2012). Antidepressants for depression in stage 3-5 chronic kidney disease: A systematic review of pharmacokinetics, efficacy and safety with recommendations by European Renal Best Practice (ERBP). Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association – European Renal Association, 27(10), 3736–3745. https://doi.org/10.1093/ndt/gfs295

Disclaimer: This guide is for general informational purposes and is not a substitute for professional medical advice. Always discuss any questions about your medication with your healthcare provider.

Get Smarter About Mental Health

Our Brain Bulletin decodes mental health updates for you.

It’s free.